Question answering system for deterministic fault diagnosis of intelligent railway signal equipment

Author:

Liu Haosen,Wang Youwei,Zhou Xiabing,Lou Zhengzheng,Ye Yangdong

Abstract

Purpose The railway signal equipment failure diagnosis is a vital element to keep the railway system operating safely. One of the most difficulties in signal equipment failure diagnosis is the uncertainty of causality between the consequence and cause for the accident. The traditional method to solve this problem is based on Bayesian Network, which needs a rigid and independent assumption basis and prior probability knowledge but ignoring the semantic relationship in causality analysis. This paper aims to perform the uncertainty of causality in signal equipment failure diagnosis through a new way that emphasis on mining semantic relationships. Design/methodology/approach This study proposes a deterministic failure diagnosis (DFD) model based on the question answering system to implement railway signal equipment failure diagnosis. It includes the failure diagnosis module and deterministic diagnosis module. In the failure diagnosis module, this paper exploits the question answering system to recognise the cause of failure consequences. The question answering is composed of multi-layer neural networks, which extracts the position and part of speech features of text data from lower layers and acquires contextual features and interactive features of text data by Bi-LSTM and Match-LSTM, respectively, from high layers, subsequently generates the candidate failure cause set by proposed the enhanced boundary unit. In the second module, this study ranks the candidate failure cause set in the semantic matching mechanism (SMM), choosing the top 1st semantic matching degree as the deterministic failure causative factor. Findings Experiments on real data set railway maintenance signal equipment show that the proposed DFD model can implement the deterministic diagnosis of railway signal equipment failure. Comparing massive existing methods, the model achieves the state of art in the natural understanding semantic of railway signal equipment diagnosis domain. Originality/value It is the first time to use a question answering system executing signal equipment failure diagnoses, which makes failure diagnosis more intelligent than before. The EMU enables the DFD model to understand the natural semantic in long sequence contexture. Then, the SMM makes the DFD model acquire the certainty failure cause in the failure diagnosis of railway signal equipment.

Publisher

Emerald

Reference19 articles.

1. Adam: a method for stochastic optimization,2015

2. cw2vec: learning Chinese word embeddings with stroke n-gram information,2018

3. BERT: pre-training of deep bidirectional transformers for language understanding,2019

4. Learning deep structured semantic models for web search using clickthrough data,2018

5. Bayesian network based failure diagnosis method for on-board equipment of train control system;Journal of the China Railway Society,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3