A systematic reliability-centred maintenance framework with fuzzy computational integration – a case study of manufacturing process machinery

Author:

Ali Ahmed Qaid AdelORCID,Ahmad RosmainiORCID,Mustafa Shaliza AzreenORCID,Mohammed Badiea AbdullahORCID

Abstract

PurposeThis study presents a systematic framework for maintenance strategy development of manufacturing process machinery. The framework is developed based on the reliability-centred maintenance (RCM) approach to minimise the high downtime of a production line, thus increasing its reliability and availability. A case study of a production line from the ghee and soap manufacturing industry in Taiz, Yemen, is presented for framework validation purposes. The framework provides a systematic process to identify the critical system(s) and guide further investigation for functional significant items (FSIs) based on quantitative and qualitative analyses before recommending appropriate maintenance strategies and specific tasks.Design/methodology/approachThe proposed framework integrates conventional RCM procedure with the fuzzy computational process to improve FSIs criticality estimation, which is the main part of failure mode effect criticality analysis (FMECA) applications. The framework consists of four main implementation stages: identification of the critical system(s), technical analysis, Fuzzy-FMECA application for FSIs criticality estimation and maintenance strategy selection. Each stage has its objective(s) and related scientific techniques that are applied to systematically guide the framework implementation.FindingsThe proposed framework validation is summarised as follows. The first stage results demonstrate that the seaming system (top and bottom systems) caused 50% of the total production line downtime, indicating it is a critical system that requires further analysis. The outcomes of the second stage provide significant technical information on the subject (seaming system), helping team members to identify and understand the structure and functional complexities of the seaming system. This stage also provides a better understanding of how the seaming system functions and how it can fail. In stage 3, the application of FMECA with the fuzzy computation integration process presents a systematic way to analyse the failure mode, effect and cause of items (components of the seaming system). This stage also includes items’ criticality estimation and ranking assessment. Finally, stage four guides team members in recommending the appropriate countermeasures (maintenance strategies and task selection) based on their priority level.Originality/valueThis paper proposes an original maintenance strategies development framework based on the RCM approach for production system equipment. Specifically, it considers a fuzzy computational process based on the Gaussian function in the third stage of the proposed framework. Adopting the fuzzy computational process improves the risk priority number (RPN) estimation, resulting in better criticality ranking determination. Another significant contribution is introducing an extended item criticality ranking assessment process to provide maximum levels of criticality item ranking. Finally, the proposed RCM framework also provides detailed guidance on maintenance strategy selection based on criticality levels, unique functionality and failure characteristics of each FSI.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3