Comparative study on performance of different artificial neural network methods for prediction of the Covid19

Author:

Sedighi Fard Alireza

Abstract

Purpose This study aims to compare many artificial neural network (ANN) methods to find out which method is better for the prediction of Covid19 number of cases in N steps ahead of the current time. Therefore, the authors can be more ready for similar issues in the future. Design/methodology/approach The authors are going to use many ANNs in this study including, five different long short-term memory (LSTM) methods, polynomial regression (from degree 2 to 5) and online dynamic unsupervised feedforward neural network (ODUFFNN). The authors are going to use these networks over a data set of Covid19 number of cases gathered by World Health Organization. After 1,000 epochs for each network, the authors are going to calculate the accuracy of each network, to be able to compare these networks by their performance and choose the best method for the prediction of Covid19. Findings The authors concluded that for most of the cases LSTM could predict Covid19 cases with an accuracy of more than 85% after LSTM networks ODUFFNN had medium accuracy of 45% but this network is highly flexible and fast computing. The authors concluded that polynomial regression cant is a good method for the specific purpose. Originality/value Considering the fact that Covid19 is a new global issue, less studies have been conducted with a comparative approach toward the prediction of Covid19 using ANN methods to introduce the best model of the prediction of this virus.

Publisher

Emerald

Subject

Business and International Management,Management of Technology and Innovation

Reference25 articles.

1. A dynamic neural network model for predicting risk of zika in real time;BMC Medicine,2019

2. Asadi, R. (2015), “Artificial intelligence for engineering design, FeedForward neural networks”, P.H.D thesis.

3. A dynamic semisupervised feedforward neural network clustering;Artificial Intelligence for Engineering Design, Analysis and Manufacturing,2016

4. Travel time prediction with LSTM neural network;Artificial Intelligence for Analysis and Forecasting,2016

5. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China;The Lancet,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3