A novel consumer preference mining method based on improved weclat algorithm

Author:

Qi Jianfang,Mou Xin,Li Yue,Chu Xiaoquan,Mu Weisong

Abstract

Purpose Conventional frequent itemsets mining ignores the fact that the relative benefits or significance of “transactions” belonging to different customers are different in most of the relevant applied studies, which leads to failure to obtain some association rules with lower support but from higher-value consumers. Because not all customers are financially attractive to firms, it is necessary that their values be determined and that transactions be weighted. The purpose of this study is to propose a novel consumer preference mining method based on conventional frequent itemsets mining, which can discover more rules from the high-value consumers. Design/methodology/approach In this study, the authors extend the conventional association rule problem by associating the “annual purchase amount” – “price preference” (AP) weight with a consumer to reflect the consumer’s contribution to a market. Furthermore, a novel consumer preference mining method, the AP-weclat algorithm, is proposed by introducing the AP weight into the weclat algorithm for discovering frequent itemsets with higher values. Findings The experimental results from the survey data revealed that compared with the weclat algorithm, the AP-weclat algorithm can make some association rules with low support but a large contribution to a market pass the screening by assigning different weights to consumers in the process of frequent itemsets generation. In addition, some valuable preference combinations can be provided for related practitioners to refer to. Originality/value This study is the first to introduce the AP-weclat algorithm for discovering frequent itemsets from transactions through considering AP weight. Moreover, the AP-weclat algorithm can be considered for application in other markets.

Publisher

Emerald

Subject

Strategy and Management,Economics and Econometrics,Business and International Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3