An ensemble machine learning framework for Airbnb rental price modeling without using amenity-driven features

Author:

Ghosh Indranil,Jana Rabin K.,Abedin Mohammad Zoynul

Abstract

Purpose The prediction of Airbnb listing prices predominantly uses a set of amenity-driven features. Choosing an appropriate set of features from thousands of available amenity-driven features makes the prediction task difficult. This paper aims to propose a scalable, robust framework to predict listing prices of Airbnb units without using amenity-driven features. Design/methodology/approach The authors propose an artificial intelligence (AI)-based framework to predict Airbnb listing prices. The authors consider 75 thousand Airbnb listings from the five US cities with more than 1.9 million observations. The proposed framework integrates (i) feature screening, (ii) stacking that combines gradient boosting, bagging, random forest, (iii) particle swarm optimization and (iv) explainable AI to accomplish the research objective. Findings The key findings have three aspects – prediction accuracy, homogeneity and identification of best and least predictable cities. The proposed framework yields predictions of supreme precision. The predictability of listing prices varies significantly across cities. The listing prices are the best predictable for Boston and the least predictable for Chicago. Practical implications The framework and findings of the research can be leveraged by the hosts to determine rental prices and augment the service offerings by emphasizing key features, respectively. Originality/value Although individual components are known, the way they have been integrated into the proposed framework to derive a high-quality forecast of Airbnb listing prices is unique. It is scalable. The Airbnb listing price modeling literature rarely witnesses such a framework.

Publisher

Emerald

Subject

Tourism, Leisure and Hospitality Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3