Hybrid intelligent adaptive controller for tiltrotor UAV

Author:

Tavoosi JafarORCID

Abstract

PurposeIn this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more accurate the reference position signals tracking, the proposed control system will be better.Design/methodology/approachIn the proposed method, for the vertical flight mode, first the model reference adaptive controller (MRAC) operates and for the horizontal flight, the model predictive control (MPC) will operate. Since the linear model is used for both of these controllers and naturally has an error compared to the real nonlinear model, a neural network is used to compensate for them. So the main novelties of this paper are a new hybrid control design (MRAC & MPC) and a neural network-based compensator for tiltrotor UAV.FindingsThe proper performance of the proposed control method in the simulation results is clear. Also the results showed that the role of compensator is very important and necessary, especially in extreme speed wind conditions and uncertain parameters.Originality/valueNovel hybrid control method. 10;-New method to use neural network as compensator in an UAV.

Publisher

Emerald

Reference27 articles.

1. Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances;Mechanical Systems and Signal Processing,2020

2. Model Predictive Control of a Tilt-Rotor UAV for Load Transportation,2016

3. Backstepping-based recurrent type-2 fuzzy sliding mode control for MIMO systems (MEMS triaxial gyroscope case study);International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2017

4. Adaptive tracking control of an unmanned aerial system based on a dynamic neural-fuzzy disturbance estimator;ISA Transactions,2020

5. Computational fluid dynamic analysis of an unmanned amphibious aerial vehicle for drag reduction;International Journal of Intelligent Unmanned Systems,2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3