Library book recommendation with CNN-FM deep learning approach

Author:

Shi XiaohuaORCID,Hao Chen,Yue Ding,Lu Hongtao

Abstract

PurposeTraditional library book recommendation methods are mainly based on association rules and user profiles. They may help to learn about students' interest in different types of books, e.g., students majoring in science and engineering tend to pay more attention to computer books. Nevertheless, most of them still need to identify users' interests accurately. To solve the problem, the authors propose a novel embedding-driven model called InFo, which refers to users' intrinsic interests and academic preferences to provide personalized library book recommendations.Design/methodology/approachThe authors analyze the characteristics and challenges in real library book recommendations and then propose a method considering feature interactions. Specifically, the authors leverage the attention unit to extract students' preferences for different categories of books from their borrowing history, after which we feed the unit into the Factorization Machine with other context-aware features to learn students' hybrid interests. The authors employ a convolution neural network to extract high-order correlations among feature maps which are obtained by the outer product between feature embeddings.FindingsThe authors evaluate the model by conducting experiments on a real-world dataset in one university. The results show that the model outperforms other state-of-the-art methods in terms of two metrics called Recall and NDCG.Research limitations/implicationsIt requires a specific data size to prevent overfitting during model training, and the proposed method may face the user/item cold-start challenge.Practical implicationsThe embedding-driven book recommendation model could be applied in real libraries to provide valuable recommendations based on readers' preferences.Originality/valueThe proposed method is a practical embedding-driven model that accurately captures diverse user preferences.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of art and emerging trends on group recommender system: a comprehensive review;International Journal of Multimedia Information Retrieval;2024-05-02

2. Editorial: Special selection on current bibliometrics and reviews;Library Hi Tech;2024-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3