Author:
Zhang Sha,Gu Zhengqi,Wu Wenguang,Zheng Ledian,Liu Jun,Yin Shanbin
Abstract
Purpose
The purpose of this paper is to develop a numerical model used for calculating the nonlinearities of large-scale hydro-pneumatic suspension (HPS) and investigating the effects of variations in flow path and operational parameter on suspension damping response.
Design/methodology/approach
To parameterization nonlinearities of the suspension, the author developed a two-phase flow model of a large-scale HPS based on computational fluid dynamics and volume of fluid method. Considerable effort was made to verify the nonlinearities by field measurements carried out on an off-highway mining dump truck. The investigation of effects of variations in flow path and operational parameter on damping characteristics highlights the necessity of the numerical simulation.
Findings
The two-phase flow model can represent the gas-oil interaction and simulate the suspension operational movement conveniently. Transient numerical simulation results can be used to model the nonlinearities of large-scale HPS accurately. A new phenomenon was discovered that the pressure in rebound chamber presents reduction trend during compression stroke in special cases. It has never been reported before.
Originality/value
Developed a two-phase flow model of a large-scale HPS, which can manage the gas-oil interaction and capture the complex flow field structure in it. The paper is the first study to model the nonlinearities of a large-scale HPS used in off-highway mining dump truck through transient numerical simulation. Compared with previous researches, such a research not only gives new insight and thorough understanding into the suspension internal fluid structure but also can give good guiding opinions to the optimal design of HPS.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference30 articles.
1. Novel structural modeling and mesh moving techniques for advanced fluid-structure interaction simulation of wind turbines;International Journal for Numerical Methods in Engineering,2015
2. Numerical investigation of a mono-tube damper with a shim stack;Journal of Mechanical Engineering Science,2017
3. Volume of fluid model for turbulence numerical simulation of stepped spillway overflow;Journal of Hydrualic Engineering,2002
4. Study on damping characteristics of hydropneumatic suspension unit of tracked vehicle;KSME International Journal,2004
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献