Markov regenerative credit rating model

Author:

Pasricha Puneet,Selvamuthu Dharmaraja,Arunachalam Viswanathan

Abstract

Purpose Credit ratings serve as an important input in several applications in risk management of the financial firms. The level of credit rating changes from time to time because of random credit risk and, thus, can be modeled by an appropriate stochastic process. Markov chain models have been widely used in the literature to generate credit migration matrices; however, emergent empirical evidences suggest that the Markov property is not appropriate for credit rating dynamics. The purpose of this article is to address the non-Markov behavior of the rating dynamics. Design/methodology/approach This paper proposes a model based on Markov regenerative process (MRGP) with subordinated semi-Markov process (SMP) to obtain the estimates of rating migration probability matrices and default probabilities. Numerical example is given to illustrate the applicability of the proposed model with the help of historical Standard & Poor’s (S&P) credit rating data. Findings The proposed model implies that rating of a firm in the future not only depends on its present rating, but also on its previous ratings. If a firm gets a rating lower than its previous ratings, there are higher chances of further downgrades, and the issue is called the rating momentum. The model also addresses the ageing problem of credit rating evolution. Originality/value The contribution of this paper is a more general approach to study the rating dynamics and overcome the issues of inappropriateness of Markov process applied in rating dynamics.

Publisher

Emerald

Subject

Finance

Reference23 articles.

1. A simple Markov chain structure for the evolution of credit ratings;Applied Stochastic Models in Business and Industry,2007

2. Measuring changes in coporate credit quality;The Journal of Fixed Income,1994

3. Age-usage semi-Markov models;Applied Mathematical Modelling,2011

4. Homogeneous semi-Markov reliability models for credit risk management;Decisions in Economics and Finance,2005

5. Initial and final backward and forward discrete time non- homogeneous semi-Markov credit risk models;Methodology and Computing in Applied Probability,2010

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3