Machine learning and manager selection: evidence from South Africa

Author:

Page Daniel,Seetharam YudhvirORCID,Auret Christo

Abstract

PurposeThis study investigates whether the skilled minority of active equity managers in emerging markets can be identified using a machine learning (ML) framework that incorporates a large set of performance characteristics.Design/methodology/approachThe study uses a cross-section of South African active equity managers from January 2002 to December 2021. The performance characteristics are analysed using ML models, with a particular focus on gradient boosters, and naïve selection techniques such as momentum and style alpha. The out-of-sample nominal, excess and risk-adjusted returns are evaluated, and precision tests are conducted to assess the accuracy of the performance predictions.FindingsA minority of active managers exhibit skill that results in generating alpha, even after accounting for fees, and show that ML models, particularly gradient boosters, are superior at identifying non-linearities. LightGBM (LG) achieves the highest out-of-sample nominal, excess and risk-adjusted return and proves to be the most accurate predictor of performance in precision tests. Naïve selection techniques, such as momentum and style alpha, outperform most ML models in forecasting emerging market active manager performance.Originality/valueThe authors contribute to the literature by demonstrating that a ML approach that incorporates a large set of performance characteristics can be used to identify skilled active equity managers in emerging markets. The findings suggest that both ML models and naïve selection techniques can be used to predict performance, but the former is more accurate in predicting ex ante performance. This study has practical implications for investment practitioners and academics interested in active asset manager performance in emerging markets.

Publisher

Emerald

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference36 articles.

1. The Sharpe ratio efficient Frontier;Journal of Risk,2012

2. Machine learning and portfolio optimisation;Management Science,2018

3. Mutual fund flows and performance in rational markets;Journal of Political Economy,2004

4. Measuring skill in the mutual fund industry;Journal of Financial Economics,2015

5. Morningstar ratings and mutual fund performance;Journal of Financial and Quantitative Analysis,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3