Process stability for GTAW-based additive manufacturing

Author:

Wang Xiaolong,Wang Aimin,Wang Kaixiang,Li Yuebo

Abstract

Abstract Purpose Traditional gas tungsten arc welding (GTAW) and GTAW-based wire and arc additive manufacturing (WAAM) are notably different. These differences are crucial to the process stability and surface quality in GTAW WAAM. This paper addresses special characteristics and the process control method of GTAW WAAM. The purpose of this paper is to improve the process stability with sensor information fusion in omnidirectional GTAW WAAM process. Design/methodology/approach A wire feed strategy is proposed to achieve an omnidirectional GTAW WAAM process. Thus, a model of welding voltage with welding current and arc length is established. An automatic control system fit to the entire GTAW WAAM process is established using both welding voltage and welding current. The effect of several types of commonly used controllers is examined. To assess the validity of this system, an arc length step experiment, various wire feed speed experiments and a square sample experiment were performed. Findings The research findings show that the resented wire feed strategy and arc length control system can effectively guarantee the stability of the GTAW WAAM process. Originality/value This paper tries to make a foundation work to achieve omnidirectional welding and process stability of GTAW WAAM through wire feed geometry analysis and sensor information fusion control model. The proposed wire feed strategy is implementable and practical, and a novel sensor fusion control method has been developed in the study for varying current GTAW WAAM process.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference19 articles.

1. Microprocessor-based arc voltage control for gas tungsten arc welding using gain scheduling;IEEE Transactions on Industry Applications,1993

2. Closed-loop control of robotic arc welding system with full-penetration monitoring;Journal of Intelligent and Robotic Systems,2009

3. Development of an automatic arc welding system using a sliding mode control;International Journal of Machine Tools and Manufacture,2005

4. Robotic arc welding: research in sensory feedback control;IEEE Transactions on Industrial Electronics,1983

5. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing;Robotics and Computer-Integrated Manufacturing,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3