Effects of non-symmetric non-uniformly distributed welding residual stress on fatigue failure initiation and propagation in a hydropower generator shaft

Author:

Abdul Jawwad Abdul KareemORCID,Mahdi Mofid

Abstract

PurposeThis article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and propagation of fatigue failure in thick shaft sections.Design/methodology/approachExperimental and numerical techniques were applied in the present study to explore the relationship(s) between welding residual-stress distribution and fatigue failure characteristics in a hydropower generator shaft. Experimental techniques included stereomicroscopy, optical and scanning electron microscopy (SEM), chemical analysis and mechanical testing. Finite element modelling (FEM) was used to model the shaft welding cycle in terms of thermal (temperature) history and the associated development of residual stresses within the weld joint.FindingsExperimental analyses have confirmed the suitability of the used material for the intended application and confirmed the failure mode to be low cycle fatigue. The observed failure characteristics, however, did not match with the applied loading in terms of design stress levels, directionality and expected crack imitation site(s). FEM results have revealed the presence of a sharp stress peak in excess of 630 MPa (about 74% of material's yield strength) around weld start point and a non-uniform residual stress distribution in both the circumferential and through-thickness directions. The present results have shown very close matching between FEM results and observed failure characteristics.Practical implicationsThe present article considers an actual industrial case of a hydropower generator shaft failure. Present results are valuable in providing insight information regarding such failures as well as some preventive design and fabrication measures for the hydropower and other power generation and transmission sector.Originality/valueThe presence of the aforementioned stress peak around welding start/end location and the non-uniform distribution of residual-stress field are in contrast to almost all published results based on some uniformity assumptions. The present FEM results were, however, the only stress distribution scenario capable of explaining the failure considered in the present research.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3