Progressive deterioration of reinforced concrete structures: effect on dynamic properties of flexural members

Author:

Khan Qaiser Uz Zaman,Farhan Muhammad,Raza AliORCID

Abstract

PurposeThe main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of modal parameters, damage assessment and damage detection of flexural members. Moreover, the analysis of flexural members has been done for the sensor arrangement to accurately predict the damage parameters without the laborious work of experimentation in the laboratory.Design/methodology/approachBeam-like structures are structures that are subjected to flexural loadings that are involved in almost every type of civil engineering construction like buildings, bridges, etc. Experimental Modal Analysis (EMA) is a popular technique to detect damages in structures without requiring tough and complex methods. Experimental work conducted in this study concludes that a structure experiences high changes in modal properties once when cracking occurs and then at the stage where cracks start at the critical neutral axis. Moreover, among the various modal parameters of the flexural members, natural frequency and mode shapes are the viable parameters for the damage detection.FindingsFor torsional mode, drop in natural frequency is high for higher damages as compared to low levels. This is because of the opening and closing of cracks in modal testing. When damage occurs in the structure, there is a reduction in the magnitude of the FRF plot. The measure of this drop can also lead to damage assessment in addition to damage detection. The natural frequency of the system is the most reliable modal parameter in detecting damages. However, for damage localization, the next step after damage assessment, mode shapes can be more helpful as compared to all other parameters.Originality/valueEffect on Dynamic Properties of Flexural Members during the Progressive Deterioration of Reinforced Concrete Structures is studied.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference49 articles.

1. Experimental modal analysis;Sound and Vibration,2001

2. Experimental modal analysis of reinforced concrete girder using appropriated excitation technique;University of Engineering and Technology Taxila. Technical Journal,2015

3. Assessing the importance of deterioration properties for the design decision-makings of low-rise asymmetric reinforced concrete buildings,2021

4. Static buckling and vibration analysis of continuously graded ceramic-metal beams using a refined higher order shear deformation theory;Bensaid, I., Cheikh, A. and Kerboua, B.;Multidiscipline Modeling in Materials and Structures,2019

5. Post-buckling analysis of shell-like structures using an implicit dynamic time integration scheme;Multidiscipline Modeling in Materials and Structures,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3