Application of a novel hybrid accumulation grey model to forecast total energy consumption of Southwest Provinces in China

Author:

Zhao XuemeiORCID,Ma XinORCID,Cai Yubin,Yuan HongORCID,Deng Yanqiao

Abstract

PurposeConsidering the small sample size and non-linear characteristics of historical energy consumption data from certain provinces in Southwest China, the authors propose a hybrid accumulation operator and a hybrid accumulation grey univariate model as a more accurate and reliable methodology for forecasting energy consumption. This method can provide valuable decision-making support for policy makers involved in energy management and planning.Design/methodology/approachThe hybrid accumulation operator is proposed by linearly combining the fractional-order accumulation operator and the new information priority accumulation. The new operator is then used to build a new grey system model, named the hybrid accumulation grey model (HAGM). An optimization algorithm based on the JAYA optimizer is then designed to solve the non-linear parameters θ, r, and γ of the proposed model. Four different types of curves are used to verify the prediction performance of the model for data series with completely different trends. Finally, the prediction performance of the model is applied to forecast the total energy consumption of Southwest Provinces in China using the real world data sets from 2010 to 2020.FindingsThe proposed HAGM is a general formulation of existing grey system models, including the fractional-order accumulation and new information priority accumulation. Results from the validation cases and real-world cases on forecasting the total energy consumption of Southwest Provinces in China illustrate that the proposed model outperforms the other seven models based on different modelling methods.Research limitations/implicationsThe HAGM is used to forecast the total energy consumption of the Southwest Provinces of China from 2010 to 2020. The results indicate that the HAGM with HA has higher prediction accuracy and broader applicability than the seven comparative models, demonstrating its potential for use in the energy field.Practical implicationsThe HAGM(1,1) is used to predict energy consumption of Southwest Provinces in China with the raw data from 2010 to 2020. The HAGM(1,1) with HA has higher prediction accuracy and wider applicability compared with some existing models, implying its high potential to be used in energy field.Originality/valueTheoretically, this paper presents, for the first time, a hybrid accumulation grey univariate model based on a new hybrid accumulation operator. In terms of application, this work provides a new method for accurate forecasting of the total energy consumption for southwest provinces in China.

Publisher

Emerald

Subject

Applied Mathematics,General Computer Science,Control and Systems Engineering

Reference39 articles.

1. Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate;Chaos, Solitons and Fractals,2008

2. A novel grey forecasting model and its optimization;Applied Mathematical Modelling,2013

3. An approach of the gm(1,1) model based on linear transformation;Journal of Grey System,2009

4. Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting;Energy Conversion and Management,2017

5. A novel hybrid model for short-term wind power forecasting;Applied Soft Computing,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3