Numerical investigation into the stability of earth dam slopes considering the effects of cavities

Author:

Alateya Hawraa,Ahangar Asr Alireza

Abstract

Purpose This study is an attempt to estimate the influence of the presence of cavities on the stability of slopes in earth dams under rapid drawdown conditions. The purpose of this paper is to study the influence of different factors, such as the diameter and location of cavities, in addition to their existence effects. Design/methodology/approach A series of finite element simulation models were developed using PLAXIS 2D finite element software to analyse the stability of slopes in earth dams while considering various effects from cavities in the subsoil under rapid drawdown conditions. Findings The results indicated that the presence of cavities and an increase in the diameter of cavities decreased the stability of the upstream face dramatically for all examined locations in a horizontal direction; however, this effect was less on the downstream side. The results also showed that variations in the location of cavities in the horizontal direction have a greater effect on the stability than those in the vertical direction. The results revealed that increasing shear strength parameters of embankment does not reduce the influence of cavities on stability when those cavities are in critical locations. Originality/value A numerical model has been developed to simulate the effects of cavities on the stability of slopes in water-retaining structures/earth dams. The stability of earth dam slopes on upstream and downstream sides under rapid drawdown conditions considering various cavity effects, including their existence, diameter and location, were numerically analysed.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference47 articles.

1. Influence of head elevation on the stability of earth fill dam, Fada dam as a case study;Diyala Journal of Engineering Sciences,2015

2. Effect of cavities on the behaviour of model pile under axial loading in sand,2017

3. Seepage and stability analyses of earth dam using finite element method;Aquatic Procedia,2015

4. Slope stability analysis for undrained loading conditions;International Journal for Numerical and Analytical Methods in Geomechanics,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3