Comparison between RST and PID controllers performance of a reduced order model and the original model of a hydraulic actuator dedicated to a semi-active suspension

Author:

Babesse Saad,Ameddah Djameleddine,Inel Fouad

Abstract

Purpose In this paper, an effective method to calculate the reduced-order model (ROM) of high-order linear time-invariant system is elaborated; this is done by evaluating time moments of the original high-order model (HOM). Design/methodology/approach The developed method has been applied to a hydraulic actuator of antiroll bar mechanism dedicated to heavy vehicle semi-active suspension. And as the actuator is a large-scale system; and that in this case, the only control applied is a classical control and with trial and error procedure (like PID), the use of an order reduction method is necessary. Hence, the actuator that has an eighth-order transfer function with uncontrollable states has been approximated by fully controllable second-order model, which is suitable for feedback controllers (RST, LQR […]). The RST control is applied to control the roll angle of the actuator and simulations are carried out to show the effectiveness of the procedure. Findings It is clear that RST shows good tracking as compared to PID. For further work, the given RST controller has a discrete character and can be easily implemented on the real process and then as a further simulation, one can use another controller such as fractional adaptive controller. Originality/value In the recent years, the technological need of modeling order, thus the complexity of the systems, directed the researchers toward the reduction of order of these systems, not only to facilitate the analysis but also to find a suitable approximation of the high-order systems while keeping the same important characteristics as closely as possible. Several methods are available but they fail to give stable transfer functions or important characteristics of the original system.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference7 articles.

1. Alphonse, M.L. (2010), “Etude de la Commande Adaptative d’un Système Electro-hydraulique”, Msc thesis, École de technologie supérieure, université de québec, p. 144.

2. An approximate method for reducing the order of a linear system;International Journal of Control,1966

3. Miége, A.J.P. (2000), “Development of active anti-roll control for heavy vehicles”, First Year Report Submitted to the University of Cambridge, Cambridge, p. 80.

4. Automatique des systèmes échantillonnés,2008

5. The development of an active roll control system for heavy vehicles;Vehicle System Dynamics,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3