Keeping twin turbocharged engine power at flight altitudes

Author:

Khodaparast Mohammad Reza,Agha Seyed Mirza Bozorg Mohsen,Kheradmand Saeid

Abstract

Purpose The purpose of this paper is the selection and arrangement of turbochargers set for internal combustion engine which could keep engine power in an altitude of up to 12.2 km above sea level. Design/methodology/approach In the current research, the target engine, a one-dimensional four-stroke 1,600 cc piston engine has been simulated and the manufacturer’ results have been validated. Depending on engine size, three proper types of Garret turbochargers GT30, GT25 and GT20 were selected for this engine. Then, the engine and a combination of two turbochargers have been modeled one-dimensionally. A control system was used for regulation of different pressure ratios between the two turbochargers. Findings The parametric analysis shows that using the combination of GT20, GT30 turbochargers with a properly controlled pressure ratio leads to a constant output power with little changes at different altitudes which enable achieving an altitude of 12.2 km for the target engine. Practical implications Adaptation of the internal combustion engine with a twin turbocharger using one-dimensional modeling. Originality/value The one-dimensional analysis provided an overall picture of the effective performance of turbochargers functioning in different altitudes and loads. It presents a new method for adopting of turbochargers set with internal combustion engines for propulsion medium-altitude aircraft.

Publisher

Emerald

Subject

Aerospace Engineering

Reference17 articles.

1. Propulsion system for very high altitude subsonic unmanned aircraft,1998

2. MALE UAV and its systems as basis of future definitions;Aircraft Engineering and Aerospace Technology,2016

3. Diesel engine application on AEW&C turboprop effectiveness-cost assessment;Aircraft Engineering and Aerospace Technology,2012

4. FEV (2003), “Benchmarking of the PEUGEOT TU5JP4, 4 – Cylinder Gasoline engine”, Print. Report of Combustion Department Engine Testing with Original ECU and Thermodynamic Analysis.

5. Turbo charger system development and propulsion system testing,1982

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3