Abstract
PurposeThis paper addresses a location-routing problem (LRP) under uncertainty for providing emergency medical services (EMS) during disasters, which is formulated using a robust optimization (RO) approach. The objectives consist of minimizing relief time and the total cost including location costs and the cost of route coverage by the vehicles (ambulances and helicopters).Design/methodology/approachA shuffled frog leaping algorithm (SFLA) is developed to solve the problem and the performance is assessed using both the ε-constraint method and NSGA-II algorithm. For a more accurate validation of the proposed algorithm, the four indicators of dispersion measure (DM), mean ideal distance (MID), space measure (SM), and the number of Pareto solutions (NPS) are used.FindingsThe results obtained indicate the efficiency of the proposed algorithm within a proper computation time compared to the CPLEX solver as an exact method.Research limitations/implicationsIn this study, the planning horizon is not considered in the model which can affect the value of parameters such as demand. Moreover, the uncertain nature of the other parameters such as traveling time is not incorporated into the model.Practical implicationsThe outcomes of this research are helpful for decision-makers for the planning and management of casualty transportation under uncertain environment. The proposed algorithm can obtain acceptable solutions for real-world cases.Originality/valueA novel robust mixed-integer linear programming (MILP) model is proposed to formulate the problem as a LRP. To solve the problem, two efficient metaheuristic algorithms were developed to determine the optimal values of objectives and decision variables.
Subject
Management Information Systems
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献