Lichtenberg optimization algorithm applied to crack tip identification in thin plate-like structures

Author:

Pereira João Luiz Junho,Chuman Matheus,Cunha Jr Sebastião Simões,Gomes Guilherme Ferreira

Abstract

Purpose This study aims to develop a numerical identification and characterization of crack propagation through the use of a new optimization metaheuristics called Lichtenberg optimization. Design/methodology/approach The damage-identification problem is treated as an inverse problem, which combines finite element methods with intelligent computational methods to obtain the best possible response. To optimize the objectives, the Lichtenberg algorithm is applied, which includes concepts of random cluster growth in nature. Findings The simulations show that it is possible to determine the Lichtenberg spectrum algorithm a part of the structure to be removed and replaced in this case to stop the propagation. Originality/value The results show a very good crack identification in plates-like structures using the Lichtenberg algorithm (LA) based only in strain fields. Although many studies have reported on damage-identification-based optimization methods, very few have focused on the crack tip modeling and LA as the main solver.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference32 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3