Strategy of coupling to model physical phenomena within molten glass bath heated by direct induction

Author:

Jacoutot Laetitia,Sauvage Emilien,Gagnoud Annie,Fautrelle Yves,Brun Patrice,Lacombe Jacques

Abstract

PurposeThis paper aims to report on a vitrification process based on direct induction that has been developed by the French Atomic Energy Commission (CEA, France). This process is characterized by currents directly induced inside the molten glass and by the cooling of all the crucible walls. In addition, a mechanical stirring device is used to homogenize the molten glass. This paper presents a global modelling of coupled phenomena that take place within the glass bath.Design/methodology/approachElectromagnetic, thermal and hydrodynamic phenomena are modelled. The aim of this study is to develop strategy of coupled modelling between these aspects. The thermohydrodynamic calculations are achieved with the Fluent software (distributed by Fluent France) and the electromagnetic aspects are solved by the OPHELIE program based on integral methods (developed in EPM laboratory).FindingsTwo configurations are considered: the first deals with thermal convection in an unstirred bath and the second takes into account the mechanical stirring.Research limitations/implicationsThe main limitation is that repartition of the Joule power density within the molten glass is supposed to be not perturbed by the intrusive elements like the thermocouples or the stirrer. This assumption allows us to perform only axisymmetric calculations of induction effect.Originality/valueThis paper present different strategy of coupling the thermohydrodynamic and direct induction phenomena taken place in the molten glass.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3