Finite element analysis of saturation effects in a tubular linear permanent magnet machine

Author:

Demenko Andrzej,Mendrela Ernest,Szeląg Wojciech

Abstract

PurposeThe aim of the paper is to find the simple and accurate model for the analysis of a drive with a tubular linear permanent magnet machine (TLPMM). Attention is paid to the models that take into account the saturation effects and is useful in the calculations of electromagnetic forces.Design/methodology/approachA circuit model and a field‐circuit model (FCM) are considered. The FCM includes finite element (FE) formulation for the axisymmetric electromagnetic field, equations which define the connections of windings and converter elements, and expressions that describe the control system. The FE method is used to determine the parameters of the circuit model. In order to simplify the circuit model, saturation effects caused by armature reaction are ignored. The electromagnetic force calculation is based on the virtual work principle and uses an approximate expression for the derivative of system co‐energy. The results obtained for the proposed models have been compared.FindingsThe proposed FE method of force calculation conforms with the applied method of movement simulation. For the rotor position when the cogging force is equal to zero the calculated cogging force is “almost” zero within seven‐decimal‐place accuracy. The effects of armature reaction on the performance of a TLPMM machine are similar to those which occur in a classical DC machine; in particular the demagnetising effect caused by saturation is observed.Originality/valueThe paper shows the influence of the saturation effects on the electromagnetic force of a TLPMM. In the case of “strong saturation”, the classical circuit model may be inappropriate for engineering calculations.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3