A standardised flexibility assessment methodology for demand response

Author:

O’Connell Sarah,Reynders Glenn,Seri Federico,Sterling Raymond,Keane Marcus M.

Abstract

Purpose The purpose of this paper is to standardised four-step flexibility assessment methodology for evaluating the available electrical load reduction or increase a building can provide in response to a signal from an aggregator or grid operator. Design/methodology/approach The four steps in the methodology consist of Step 1: systems, loads, storage and generation identification; Step 2: flexibility characterisation; Step 3: scenario modelling; and Step 4: key performance indicator (KPI) label. Findings A detailed case study for one building, validated through on-site experiments, verified the feasibility and accuracy of the approach. Research limitations/implications The results were benchmarked against available demonstration studies but could benefit from the future development of standardised benchmarks. Practical implications The ease of implementation enables building operators to quickly and cost effectively evaluate the flexibility of their building. By clearly defining the flexibility range, the KPI label enables contract negotiation between stakeholders for demand side services. It may also be applicable as a smart readiness indicator. Social implications The novel KPI label has the capability to operationalise the concept of building flexibility to a wider spectrum of society, enabling smart grid demand response roll-out to residential and small commercial customers. Originality/value This paper fulfils an identified need for an early stage flexibility assessment which explicitly includes source selection that can be implemented in an offline manner without the need for extensive real-time data acquisition, ICT platforms or additional metre and sensor installations.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference51 articles.

1. Defining and operationalising the concept of an energy positive neighbourhood,2015

2. Certification prerequisites for activities related to the trading of demand response resources;Energy,2015

3. Regulation as an enabler of demand response in electricity markets and power systems;Journal of Cleaner Production,2018

4. Baak, J. (2017), “Chapter 9 – bringing DER into the mainstream: regulations, innovation, and disruption on the grid’s edge”, in Sioshansi, F.P. (Ed.), Innovation and Disruption at the Grid’s Edge, Academic Press, Amsterdam, pp. 167-186.

5. Robust allocation of reserves considering different reserve types and the flexibility from HVDC;IET Generation, Transmission & Distribution,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3