Aero‐design of transonic LH2 and LOX contra rotating turbopumps in an expander rocket engine

Author:

Paniagua Guillermo,Lavagnoli Sergio,Verstraete Tom,Mahmoudi Wassim,Benamara Tariq

Abstract

PurposeContra‐rotating turbines offer reduced size, weight, and cooling requirements, compared to conventional co‐rotating machinery. In spite of the associated mechanical complexity, their aero‐thermal performance is superior to conventional turbines, not only due to the elimination of stator blade rows, but also because lower turning airfoils can be implemented as a result. The purpose of this paper is to present a methodology to determine the optimum velocity triangles of the turbine, together with a two‐dimensional design and optimization tool to minimize the blade unsteady force using radial basis function network, coupled to a genetic algorithm. The proposed design methodology is illustrated with the aerodynamic design of a contra‐rotating two‐axis turbine, which is able to deliver the power necessary to drive the LOX and LH2 pumps of an improved expander rocket engine.Design/methodology/approachThis paper presents a methodology to determine the optimum velocity triangles of the turbine, together with a two dimensional design and optimization tool to minimize the blade unsteady force using radial basis function network, coupled to a genetic algorithm. The proposed design methodology is illustrated with the aerodynamic design of a contra‐rotating two‐axis turbine, which is able to deliver the power necessary to drive the LOX and LH2 pumps of an expander rocket engine, namely the Japanese LE‐5B.FindingsThe airfoil optimizer allows reductions in the downstream pressure distortion of 40 per cent. Consequently, the unsteady forces in the downstream blade row are minimized.Originality/valueThis paper presents to turbomachinery designers in liquid propulsion a novel tool to enhance the aerodynamic performance while reducing the unsteady forces on the blades.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilevel method for predicting flow fields in radial turbines based on sparsity-promoting dynamic mode decomposition;International Journal of Numerical Methods for Heat & Fluid Flow;2023-08-11

2. Non-Dimensional Parameters for Comparing Conventional and Counter-Rotating Turbomachines;Journal of Turbomachinery;2021-07-05

3. Numerical study of turbulent cavitating flows in thermal regime;International Journal of Numerical Methods for Heat & Fluid Flow;2017-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3