Adsorptive removal of congo red dye from aqueous solutions using Mo-doped CoFe2O4 magnetic nanoparticles

Author:

Amar Ibrahim A.,Asser Jawaher O.,Mady Amina S.,Abdulqadir Mabroukah S.,Altohami Fatima A.,Sharif Abubaker A.,Abdalsamed Ihssin A.

Abstract

Purpose The main purpose of this paper is to investigate the adsorption properties of CoFe1.9Mo0.1O4 magnetic nanoparticles (CFMo MNPs) using, anionic dye “congo red (CR)” as a model of water pollutants. Design/methodology/approach The magnetic nano-adsorbent was synthesized via sol-gel process. Different techniques including; Fourier transform infrared spectroscopy, point of zero charge, scanning electron microscope and X-ray powder diffraction were used to characterize the prepared adsorbent. Adsorption experiments were conducted in batch mode under various conditions (contact time, shaking speed, initial dye concentration, initial solution pH, solution temperature and adsorbent amount) to investigate the adsorption capability of CFMo MNPs for CR. Findings The results showed that, CFMo MNPs could successfully remove more than 90% of CR dye within 20 min. Adsorption kinetics and isotherms were better described using pseudo-second-order (PSO) and Langmuir models, respectively. The maximum adsorbed amount (qmax) of CR dye was 135.14 mg/g. The adsorption process was found to be endothermic and spontaneous in nature as demonstrated by the thermodynamics ( ΔGo, ΔHoand ΔSo). Practical implications This study provided a good example of using an easily separated magnetic nano-adsorbent for fast removal of a very toxic organic pollutant, congo red, from the aquatic environment Originality/value The employment of Mo-doped cobalt ferrite for the first time for removing hazardous anionic dyes such as congo red from their aqueous solutions.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference48 articles.

1. Modified sugarcane bagasse for the removal of anionic dyes from aqueous solution;Pigment & Resin Technology,2019

2. Adsorptive removal of methylene blue dye from aqueous folutions using CoFe1.9Mo0.1O4 magnetic nanoparticles;Iranian Journal of Energy and Environment,2018

3. Removal of Pb(II) and cd(II) from water by adsorption on peels of banana;Bioresource Technology,2010

4. Adsorption characteristics of Congo red on carbonized leonardite;Journal of Cleaner Production,2016

5. Rapid hydrothermal synthesis of magnetic CoxNi1−xFe2O4 nanoparticles and their application on removal of Congo red;Chemical Engineering Journal,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3