Characterization of properties in friction-welded austenitic-stainless steel and aluminium joints

Author:

Sahin Mumin

Abstract

Purpose – The main purpose of the present study was to evaluate the metallurgical and mechanical properties of dissimilar metal friction welds (FWs) between aluminium and type 304 stainless steel. Design/methodology/approach – One of the manufacturing methods used to produce parts made from different materials is the FW method. Therefore, in the present study, austenitic stainless steel and aluminium parts were joined by FW. Tensile, fatigue and notch-impact tests were applied to FW specimens, and the results were compared with those for the original materials. Microstructure, energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis and hardness variations were conducted on the joints. Findings – It was found from the microstructure and XRD analysis that inter-metallic phases formed in the interface which further caused a decrease in the strength of the joints. Research limitations/implications – In this study, the rotation speed was kept constant. The effects of the rotation speed on the welding quality can be examined in future. It is important to note that the FW process was successfully accomplished in this study although it was particularly difficult to obtain the weld due to the large deformations at the interface. Practical implications – Low-density components such as aluminium and magnesium can be joined with steels owing to being cost-effective in industry. Application of classical welding techniques to such materials is difficult because they have different thermal properties. Their welding plays a key part in industrial quality and process control, in the efficient use of energy and other resources, in health and safety. Then, this study will contribute for welded, brazed and soldered materials. Originality/value – The main value of this paper is to contribute and fulfill the influence of the interface on properties in welding of various materials that is being studied so far in the literature.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3