Integrating neuro-fuzzy system and evolutionary optimization algorithms for short-term power generation forecasting

Author:

Jahangoshai Rezaee Mustafa,Dadkhah Mojtaba,Falahinia Masoud

Abstract

Purpose This study aims to short-therm forecasting of power generation output for this purpose, an adaptive neuro-fuzzy inference system (ANFIS) is designed to forecast the output power of power plant based on climate factors considering wind speed and wind direction simultaneously. Design/methodology/approach Several methods and algorithms have been proposed for systems forecasting in various fields. One of the strongest methods for modeling complex systems is neuro-fuzzy that refers to combinations of artificial neural network and fuzzy logic. When the system becomes more complex, the conventional algorithms may fail for network training. In this paper, an integrated approach, including ANFIS and metaheuristic algorithms, is used for increasing forecast accuracy. Findings Power generation in power plants is dependent on various factors, especially climate factors. Operating power plant in Iran is very much influenced because of climate variation, including from tropical to subpolar, and severely varying temperature, humidity and air pressure for each region and each season. On the other hands, when wind speed and wind direction are used simultaneously, the training process does not converge, and the forecasting process is unreliable. The real case study is mentioned to show the ability of the proposed approach to remove the limitations. Originality/value First, ANFIS is applied for forecasting based on climate factors, including wind speed and wind direction, that have rarely been used simultaneously in previous studies. Second, the well-known and more widely used metaheuristic algorithms are applied to improve the learning process for forecasting output power and compare the results.

Publisher

Emerald

Subject

Strategy and Management,General Energy

Reference34 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3