Earthquake response of linear-elastic arch-frames using exact curved beam formulations

Author:

Bozyigit BaranORCID

Abstract

PurposeThis study aims to obtain earthquake responses of linear-elastic multi-span arch-frames by using exact curved beam formulations. For this purpose, the dynamic stiffness method (DSM) which uses exact mode shapes is applied to a three-span arch-frame considering axial extensibility, shear deformation and rotational inertia for both columns and curved beams. Using exact free vibration properties obtained from the DSM approach, the arch-frame model is simplified into an equivalent single degree of freedom (SDOF) system to perform earthquake response analysis.Design/methodology/approachThe dynamic stiffness formulations of curved beams for free vibrations are validated by using the experimental data in the literature. The free vibrations of the arch-frame model are investigated for various span lengths, opening angle and column dimensions to observe their effects on the dynamic behaviour. The calculated natural frequencies via the DSM are presented in comparison with the results of the finite element method (FEM). The mode shapes are presented. The earthquake responses are calculated from the modal equation by using Runge-Kutta algorithm.FindingsThe displacement, base shear, acceleration and internal force time-histories that are obtained from the proposed approach are compared to the results of the finite element approach where a very good agreement is observed. For various span length, opening angle and column dimension values, the displacement and base shear time-histories of the arch-frame are presented. The results show that the proposed approach can be used as an effective tool to calculate earthquake responses of frame structures having curved beam elements.Originality/valueThe earthquake response of arch-frames consisting of curved beams and straight columns using exact formulations is obtained for the first time according to the best of the author’s knowledge. The DSM, which uses exact mode shapes and provides accurate free vibration analysis results considering each structural members as one element, is applied. The complicated structural system is simplified into an equivalent SDOF system using exact mode shapes obtained from the DSM and earthquake responses are calculated by solving the modal equation. The proposed approach is an important alternative to classical FEM for earthquake response analysis of frame structures having curved members.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference28 articles.

1. An exact dynamic stiffness matrix for a beam incorporating Rayleigh–Love and Timoshenko theories;International Journal of Mechanical Sciences,2019

2. Free vibration and harmonic response of cracked frames using a single variable shear deformation theory;Structural Engineering and Mechanics,2020

3. Free vibration analysis of arch-frames using the dynamic stiffness approach;Vibroengineering PROCEDIA,2020

4. Free vibrations of spatial Timoshenko arches;Journal of Sound and Vibration,2014

5. Vibrations of planar curved beams, rings, and arches;Applied Mechanics Reviews,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3