From the Fermi–Dirac distribution to PD curves

Author:

Brunel Vivien

Abstract

Purpose In machine learning applications, and in credit risk modeling in particular, model performance is usually measured by using cumulative accuracy profile (CAP) and receiving operating characteristic curves. The purpose of this paper is to use the statistics of the CAP curve to provide a new method for credit PD curves calibration that are not based on arbitrary choices as the ones that are used in the industry. Design/methodology/approach The author maps CAP curves to a ball–box problem and uses statistical physics techniques to compute the statistics of the CAP curve from which the author derives the shape of PD curves. Findings This approach leads to a new type of shape for PD curves that have not been considered in the literature yet, namely, the Fermi–Dirac function which is a two-parameter function depending on the target default rate of the portfolio and the target accuracy ratio of the scoring model. The author shows that this type of PD curve shape is likely to outperform the logistic PD curve that practitioners often use. Practical implications This paper has some practical implications for practitioners in banks. The author shows that the logistic function which is widely used, in particular in the field of retail banking, should be replaced by the Fermi–Dirac function. This has an impact on pricing, the granting policy and risk management. Social implications Measuring credit risk accurately benefits the bank of course and the customers as well. Indeed, granting is based on a fair evaluation of risk, and pricing is done accordingly. Additionally, it provides better tools to supervisors to assess the risk of the bank and the financial system as a whole through the stress testing exercises. Originality/value The author suggests that practitioners should stop using logistic PD curves and should adopt the Fermi–Dirac function to improve the accuracy of their credit risk measurement.

Publisher

Emerald

Subject

Finance

Reference19 articles.

1. Calibrating volatility surfaces via relative-entropy minimization;Applied Mathematical Finance,1997

2. From recursions to asymptotics: On szekeres’ formula for the number of partitions;The Electronic Journal of Combinatorics,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3