An improved density-based approach to risk assessment on railway investment

Author:

Guo JingweiORCID,Zhang JiORCID,Zhang YongxiangORCID,Xu Peijuan,Li LutianORCID,Xie ZhongqiORCID,Li QinglinORCID

Abstract

PurposeDensity-based spatial clustering of applications with noise (DBSCAN) is the most commonly used density-based clustering algorithm, while it cannot be directly applied to the railway investment risk assessment. To overcome the shortcomings of calculation method and parameter limits of DBSCAN, this paper proposes a new algorithm called Improved Multiple Density-based Spatial clustering of Applications with Noise (IM-DBSCAN) based on the DBSCAN and rough set theory.Design/methodology/approachFirst, the authors develop an improved affinity propagation (AP) algorithm, which is then combined with the DBSCAN (hereinafter referred to as AP-DBSCAN for short) to improve the parameter setting and efficiency of the DBSCAN. Second, the IM-DBSCAN algorithm, which consists of the AP-DBSCAN and a modified rough set, is designed to investigate the railway investment risk. Finally, the IM-DBSCAN algorithm is tested on the China–Laos railway's investment risk assessment, and its performance is compared with other related algorithms.FindingsThe IM-DBSCAN algorithm is implemented on China–Laos railway's investment risk assessment and compares with other related algorithms. The clustering results validate that the AP-DBSCAN algorithm is feasible and efficient in terms of clustering accuracy and operating time. In addition, the experimental results also indicate that the IM-DBSCAN algorithm can be used as an effective method for the prospective risk assessment in railway investment.Originality/valueThis study proposes IM-DBSCAN algorithm that consists of the AP-DBSCAN and a modified rough set to study the railway investment risk. Different from the existing clustering algorithms, AP-DBSCAN put forward the density calculation method to simplify the process of optimizing DBSCAN parameters. Instead of using Euclidean distance approach, the cutoff distance method is introduced to improve the similarity measure for optimizing the parameters. The developed AP-DBSCAN is used to classify the China–Laos railway's investment risk indicators more accurately. Combined with a modified rough set, the IM-DBSCAN algorithm is proposed to analyze the railway investment risk assessment. The contributions of this study can be summarized as follows: (1) Based on AP, DBSCAN, an integrated methodology AP-DBSCAN, which considers improving the parameter setting and efficiency, is proposed to classify railway risk indicators. (2) As AP-DBSCAN is a risk classification model rather than a risk calculation model, an IM-DBSCAN algorithm that consists of the AP-DBSCAN and a modified rough set is proposed to assess the railway investment risk. (3) Taking the China–Laos railway as a real-life case study, the effectiveness and superiority of the proposed IM-DBSCAN algorithm are verified through a set of experiments compared with other state-of-the-art algorithms.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference48 articles.

1. A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method;Biocybernetics and Biomedical Engineering,2020

2. Automatic subspace clustering of high dimensional data for data mining applications,1998

3. OPTICS: ordering points to identify the clustering structure,1999

4. Substantiation of K-means and affinity propagation algorithm,2017

5. Faster DB-scan and HDB-scan in low-dimensional Euclidean spaces;International Journal of Computational Geometry and Applications,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3