Calendar anomaly: unique evidence from the Indian stock market

Author:

Harshita HarshitaORCID,Singh Shveta,Yadav Surendra S.

Abstract

Purpose The purpose of this paper is to ascertain the monthly seasonality in the Indian stock market after taking into consideration the market features of leptokurtosis, volatility clustering and the leverage effect. Design/methodology/approach Augmented Dickey-Fuller, Phillips-Perron and Kwaitkowski-Phillips-Schmidt-Shin tests are deployed to check stationarity of the series. Autocorrelation function, partial autocorrelation function and Ljung-Box statistics are employed to check the applicability of volatility models. An exponential generalized auto regressive conditionally heteroskedastic model is deployed to test the seasonality, where the conditional mean equation is a switching model with dummy variables for each month of the year. Findings Though the financial year in India stretches from April to March, the stock market exhibits a November effect (returns in November are the highest). Cultural factors, misattribution bias and liquidity hypothesis seem to explain the phenomenon. Research limitations/implications The paper endeavors to provide a review of possible explanations behind month-of-the-year effect documented in literature in the past four decades. Further, the unique evidence from the Indian stock market supports the argument in the literature that monthly seasonality, by nature, may not be a consistent/robust phenomenon. Therefore, it needs to be examined from time to time. Originality/value As the seasonality in the stock market and resultant anomalies are dynamic phenomena, the paper reports the current seasonality/anomalies prevalent in the Indian market. This would aid investors in designing short-term investment portfolios (based on anomalies present) in order to earn abnormal returns.

Publisher

Emerald

Subject

General Business, Management and Accounting

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3