Author:
Wachs Anthony,Clermont Jean‐Robert,Khalifeh Ahmad
Abstract
A finite volume method is applied to numerical simulations of steady isothermal and non‐isothermal flows of fluids obeying different constitutive equations: Newtonian, purely viscous with shear‐thinning properties (Carreau law) and viscoelastic Upper Convected Maxwell differential model whose temperature dependence is described by a William‐Landel‐Ferry equation. The flow situations concern various abrupt axisymmetric contractions from 2:1 to 16:1. Such flow geometries are involved in polymer processing operations. The governing equations are discretized on a staggered grid with an upwind scheme for the convective‐type terms and are solved by a decoupled algorithm, stabilized by a pseudo‐transient stress term and an elastic viscous stress splitting technique. The numerical results highlight the influence of temperature on the flow situations, and also the complex behaviour of the materials under non‐isothermal conditions.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献