Author:
Guo Weiping,Liu Diantong,Wang Wei
Abstract
PurposeWidely used in micro‐position devices and vibration control, the piezoelectric actuator exhibits strong hysteresis effects, which can cause inaccuracy and oscillations, even lead to instability. If the hysteretic effects can be predicted, a controller can be designed to correct for these effects. This paper aims to present a neural network hysteresis model with an improved Preisach model to predict the output of piezoelectric actuator.Design/methodology/approachThe improved Preisach model is given: A wiping‐out memory sequence is defined that is along a single axis only and at the same time the ascending and the descending extreme points are separated. The extended area variable is calculated according to wiping‐out memory sequence. The relationship between the two inputs (the extended area variable and variable rate of input signal) and the hysteresis output is implemented with a neural network to approximate the hysteresis model for the piezoelectric actuators.FindingsSome experiments are carried out with a piezoelectric ceramic (PST150/7/40 VS12) and the results show the neural network hysteresis model can reliably predict the hysteretic behaviours in piezoelectric actuators.Originality/valueThe improved Preisach model is a simple model that is implemented by a neural network to reliably predict the hysteretic output in piezoelectric actuators.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献