Neural network hysteresis modeling with an improved Preisach model for piezoelectric actuators

Author:

Guo Weiping,Liu Diantong,Wang Wei

Abstract

PurposeWidely used in micro‐position devices and vibration control, the piezoelectric actuator exhibits strong hysteresis effects, which can cause inaccuracy and oscillations, even lead to instability. If the hysteretic effects can be predicted, a controller can be designed to correct for these effects. This paper aims to present a neural network hysteresis model with an improved Preisach model to predict the output of piezoelectric actuator.Design/methodology/approachThe improved Preisach model is given: A wiping‐out memory sequence is defined that is along a single axis only and at the same time the ascending and the descending extreme points are separated. The extended area variable is calculated according to wiping‐out memory sequence. The relationship between the two inputs (the extended area variable and variable rate of input signal) and the hysteresis output is implemented with a neural network to approximate the hysteresis model for the piezoelectric actuators.FindingsSome experiments are carried out with a piezoelectric ceramic (PST150/7/40 VS12) and the results show the neural network hysteresis model can reliably predict the hysteretic behaviours in piezoelectric actuators.Originality/valueThe improved Preisach model is a simple model that is implemented by a neural network to reliably predict the hysteretic output in piezoelectric actuators.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3