Barriers and cost model of implementing unmanned aerial system (UAS) services in a decentralised system: case of the Dominican Republic

Author:

Reynoso Vanderhorst Hamlet David,Heesom David,Suresh Subashini,Renukappa Suresh,Burnham Keith

Abstract

Purpose The aim of this paper is to identify the business barriers that influence cost of implementing unmanned aerial system (UAS) and its suitability for a decentralised system. UAS, or drone, plays a role of data provider to architectural, engineering and construction professionals within a decentralised system. However, the expectations in the execution and test of the effectiveness of the UAS is often not met. The reasons for these fails are not well elaborated in the literature. Hence, the study investigates the barriers and cost analysis of UAS that can be used for a decentralised case, in which the UAS data are useful for multiple stakeholders, and provide illustration of the interactions within this approach. Design/methodology/approach This paper is part of a longitudinal project by using a qualitative method of interviewing 24 participants involved in the process of application of drones in the country of the Dominican Republic. The open-ended semi-structured interviews were composed for questions regarding the application of UAS, barriers and business implications. The data gathered were transcribed and used thematic analysis for its interpretation. Later, conclusions of the barriers of UAS implementation in the organisation were analysed and a cost model was developed to identify a viable scenario. Findings The paper provides empirical insights about the barriers and economic considerations faced in the implementation process of UAS. In this research, 16 barriers in the implementation process at the management level, 8 types of cases of business relationships and 13 business models were identified. Furthermore, recommendations were made about being the accountability of the dimensions and recurrent visits to the projects handled by the portfolio of the organisations. Research limitations/implications Blockchain system is supported by UAS data and its tests require skills and resources that were outside of the scope of the main research intend regarding UAS implementation in construction. Furthermore, as these technologies are still under development, the assessment of the decentralised system, smart contract and swarm technology was addressed conceptually and further research are encouraged in this field. Practical implications The paper includes barriers to consider before implementation, business implications, project examples and cost structure developed. Furthermore, the findings are fit theoretically into the context of a decentralised system. It was understood and contemplated that monitoring in open and outdoor spaces is the suitable approach for UAS implementations for decentralised system. The trend of decentralised autonomous organisations for transparency and efficiency of human tasks provides the foundations of human–robot interactions as well as the role of tokenisation of assets into the cyberspace. Therefore, the paper brings managers and technicians the implications for the future-proofing the implementation of UAS. Originality/value This paper provides an overview of the implications of cost and the suitable scenarios for return of investment in the UAS implementation in the current stage of the technology development. In addition, the paper makes reference to decentralised systems, smart contracts and swarm technology as options in which reality capture technologies are essential for construction projects.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference54 articles.

1. Exploratory study of using unmanned aerial system imagery for construction site 3D mapping;Construction Innovation,2018

2. Review on sensing technology adoption in the construction industry;Sensors,2021

3. Evaluation of UAV–CRP data for monitoring transportation infrastructure constructed over expansive soils;Indian Geotechnical Journal,2019

4. Total system error analysis of UAV-CRP technology for monitoring transportation infrastructure assets;Engineering Geology,2018

5. Sewer inlet localisation in UAV image clouds: improving performance with multiview detection;Remote Sensing,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3