Experimental analysis and modeling of viscosity and thermal conductivity of GNPs/SAE 5W40 nanolubricant

Author:

Wadi Valéry Tusambila,Özmen Özkan,Karamış Mehmet Baki

Abstract

Purpose The purpose of this study is to investigate thermal conductivity and dynamic viscosity of graphene nanoplatelet-based (GNP) nanolubricant. Design/methodology/approach Nanolubricants in concentrations of 0.025, 0.05, 0.1 and 0.5 Wt% were prepared by means of two-step method. The stability of nanolubricants was monitored by visual inspection and dynamic light scattering tests. Thermal conductivity and dynamic viscosity of nanolubricants in various temperatures between 25°C–70°C were measured with KD2-Pro analyser device and a rotational viscometer MRC VIS-8, respectively. A comparison between experimentally achieved results and those obtained from existing models was performed. New correlations were proposed and artificial neural network (ANN) model was used for predicting thermal conductivity and dynamic viscosity. Findings The designed nanolubricant showed good stability after at least 21 days. Thermal conductivity and dynamic viscosity increased with particles concentration. In addition, as the temperature increased, thermal conductivity increased but dynamic viscosity decreased. Compared to the base oil, maximum enhancements were achieved at 70°C with the concentration of 0.5 Wt.% for dynamic viscosity and at 55°C with the same concentration for thermal conductivity. Besides, ANN results showed better performance than proposed correlations. Practical implications This study outcomes will contribute to enhance thermophysical properties of conventional lubricating oils. Originality/value To the best of our knowledge, there is no paper related to experimental study, new correlations and modelling with ANN of thermal conductivity and dynamic viscosity of GNPs/SAE 5W40 nanolubricant in the available literature. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0088/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference22 articles.

1. Predicting the viscosity of multi-walled carbon nanotubes/water nano fluid by developing an optimal artificial neural network based on experimental data;International Communications in Heat and Mass Transfer,2016

2. An experimental evaluation on thermophysical properties of functionalized graphene nanoplatelets ionanofluids;International Communications in Heat and Mass Transfer,2018

3. Investigation of thermal and electrical conductivity of graphene based nanofluids;Journal of Applied Physics,2010

4. Thermophysical properties of graphene nanosheets – hydrogenated oil based nanofluid for drilling fluid improvements;Applied Thermal Engineering,2017

5. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review;Nanomaterials,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3