The route problem of multimodal transportation with timetable: stochastic multi-objective optimization model and data-driven simheuristic approach

Author:

Peng YongORCID,Luo Yi Juan,Jiang Pei,Yong Peng Cheng

Abstract

PurposeDistribution of long-haul goods could be managed via multimodal transportation networks where decision-maker has to consider these factors including the uncertainty of transportation time and cost, the timetable limitation of selected modes and the storage cost incurred in advance or delay arriving of the goods. Considering the above factors comprehensively, this paper establishes a multimodal multi-objective route optimization model which aims to minimize total transportation duration and cost. This study could be used as a reference for decision-maker to transportation plans.Design/methodology/approachMonte Carlo (MC) simulation is introduced to deal with transportation uncertainty and the NSGA-II algorithm with an external archival elite retention strategy is designed. An efficient transformation method based on data-drive to overcome the high time-consuming problem brought by MC simulation. Other contribution of this study is developed a scheme risk assessment method for the non-absolutely optimal Pareto frontier solution set obtained by the NSGA-II algorithm.FindingsNumerical examples verify the effectiveness of the proposed algorithm as it is able to find a high-quality solution and the risk assessment method proposed in this paper can provide support for the route decision.Originality/valueThe impact of timetable on transportation duration is analyzed and making a detailed description in the mathematical model. The uncertain transportation duration and cost are represented by random number that obeys a certain distribution and designed NSGA-II with MC simulation to solve the proposed problem. The data-driven strategy is adopted to reduce the computational time caused by the combination of evolutionary algorithm and MC simulation. The elite retention strategy with external archiving is created to improve the quality of solutions. A risk assessment approach is proposed for the solution scheme and in the numerical simulation experiment.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference51 articles.

1. Robust optimization of the intermodal freight transport problem: modeling and solving with an efficient;Journal of Computational Science,2019

2. Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion;Transportation Research Part E: Logistics and Transportation Review,2015

3. A parallel algorithm for solving time dependent multimodal transport problem,2011

4. Optimized load planning of trains in intermodal transportation;OR Spectrum,2012

5. An intermodal transport network planning algorithm using dynamic programming;Applied Intelligence,2012

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3