Optimal inductor design for nanofluid heating characterisation

Author:

Bertani Roberta,Ceretta Flavio,Di Barba Paolo,Dughiero Fabrizio,Forzan Michele,Michelin Rino Antonio,Sgarbossa Paolo,Sieni Elisabetta,Spizzo Federico

Abstract

Purpose – Magnetic fluid hyperthermia experiment requires a uniform magnetic field in order to control the heating rate of a magnetic nanoparticle fluid for laboratory tests. The automated optimal design of a real-life device able to generate a uniform magnetic field suitable to heat cells in a Petri dish is presented. The paper aims to discuss these issues. Design/methodology/approach – The inductor for tests has been designed using finite element analysis and evolutionary computing coupled to design of experiments technique in order to take into account sensitivity of solutions. Findings – The geometry of the inductor has been designed and a laboratory prototype has been built. Results of preliminary tests, using a previously synthesized and characterized magneto fluid, are presented. Originality/value – Design of experiment approach combined with evolutionary computing has been used to compute the solution sensitivity and approximate a 3D Pareto front. The designed inductor has been tested in an experimental set-up.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3