Large-scale 3D printing technology based on the visual stitching method

Author:

Lv Jianran,Shen Hongyao,Fu Jianzhong

Abstract

Purpose 3D printing for objects whose size exceeds the scope of the printer is still a tough challenge in application. The purpose of this paper is to propose a visual stitching large-scale (VSLS) 3D-printing method to solve this problem. Design/methodology/approach The single segmentation point method and multiple segmentation point method are proposed to adaptively divide each slice of the model into several segments. For each layer, the mobile robot will move to different positions to print each segment, and every time it arrives at the planned location, the contours of the printed segments are captured with a high-definition camera by the feature point recognition algorithm. Then, the coordinate transformation is implemented to adjust the printing codes of the next segment so that each part can be perfectly aligned. The authors print up layer by layer in this manner until the model is complete. Findings In Section 3, two specimens, whose sizes are 166 per cent and 252 per cent of the scope of the 3D-printing robot, are successfully printed. Meanwhile, the completed models of the specimens are printed using a suitable traditional printer for comparison. The result shows that the specimens in the test group have basically identical sizes to those in the control group, which verifies the feasibility of the VSLS method. Originality/value Unlike most of the current solutions that demand harsh requirement for positioning accuracy of the mobile robots, the authors use a camera to compensate for the lost positioning accuracy of the device during movement, thereby avoiding precise control to the device’s location. And the coordinate transformation is implemented to adjust the printing codes of the next sub-models so that each part can be aligned perfectly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference21 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3