Adverse drug reaction early warning using user search data

Author:

Shang Wei,Chen Hsinchun,Livoti Christine

Abstract

Purpose The purpose of this paper is to propose a framework to detect adverse drug reactions (ADRs) using internet user search data, so that ADR events can be identified early. Empirical investigation of Avandia, a type II diabetes treatment, is conducted to illustrate how to implement the proposed framework. Design/methodology/approach Typical ADR identification measures and time series processing techniques are used in the proposed framework. Google Trends Data are employed to represent user searches. The baseline model is a disproportionality analysis using official drug reaction reporting data from the US Food and Drug Administration’s Adverse Event Reporting System. Findings Results show that Google Trends series of Avandia side effects search reveal a significant early warning signal for the side effect emergence of Avandia. The proposed approach of using user search data to detect ADRs is proved to have a longer leading time than traditional drug reaction discovery methods. Three more drugs with known adverse reactions are investigated using the selected approach, and two are successfully identified. Research limitations/implications Validation of Google Trends data’s representativeness of user search is yet to be explored. In future research, user search in other search engines and in healthcare web forums can be incorporated to obtain a more comprehensive ADR early warning mechanism. Practical implications Using internet data in drug safety management with a proper early warning mechanism may serve as an earlier signal than traditional drug adverse reaction. This has great potential in public health emergency management. Originality/value The research work proposes a novel framework of using user search data in ADR identification. User search is a voluntary drug adverse reaction exploration behavior. Furthermore, user search data series are more concise and accurate than text mining in forums. The proposed methods as well as the empirical results will shed some light on incorporating user search data as a new source in pharmacovigilance.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference37 articles.

1. Perspectives on the use of data mining in pharmacovigilance;Drug Safety,2005

2. Social network sites as a mode to collect health data: a systematic review;Journal of Medical Internet Research,2014

3. A novel evaluation of world no tobacco day in Latin America;Journal of Medical Internet Research,2012

4. A Bayesian neural network method for adverse drug reaction signal generation;European Journal of Clinical Pharmacology,1998

5. A rapid method for assessing social versus independent interest in health issues: a case study of ‘bird flu’ and ‘swine flu’;Social Science & Medicine,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3