Enhancement of network coding in wireless sensor network using improved lion algorithm: intention toward maximizing network throughput and lifetime

Author:

Dike Prashant R.ORCID,Vishwanath T.S.,Rohakale Vandana

Abstract

PurposeSince communication usually accounts as the foremost problem for power consumption, there are some approaches, such as topology control and network coding (NC), for diminishing the activity of sensors’ transceivers. If such approaches are employed simultaneously, then the overall performance does raise as expected. In a wireless sensor network (WSN), the linear NC has been shown to enhance the performance of network throughput and reduce delay. However, the NC condition of existing NC-aware routings may experience the issue of false-coding effect in some scenarios and usually neglect node energy, which highly affects the energy efficiency performance. The purpose of this paper is to propose a new NC scheduling in a WSN with the intention of maximizing the throughput and minimizing the energy consumption of the network.Design/methodology/approachThe improved meta-heuristic algorithm called the improved mutation-based lion algorithm (IM-LA) is used to solve the problem of NC scheduling in a WSN. The main intention of implementing improved optimization is to maximize the throughput and minimize the energy consumption of the network during the transmission from the source to the destination node. The parameters like topology and time slots are taken for optimizing in order to obtain the concerned objective function. While solving the current optimization problem, it has considered a few constraints like timeshare constraint, data-flow constraint and domain constraint. Thus, the network performance is proved to be enhanced by the proposed model when compared to the conventional model.FindingsWhen 20 nodes are fixed for the convergence analysis, performed in terms of multi-objective function, it is noted that during the 400th iteration, the proposed IM-LA was 10.34, 13.91 and 50% better than gray wolf algorithm (GWO), firefly algorithm (FF) and particle swarm optimization (PSO), respectively, and same as LA. Therefore, it is concluded that the proposed IM-LA performs extremely better than other conventional methods in minimizing the cost function, and hence, the optimal scheduling of nodes in a WSN in terms of the multi-objective function, i.e. minimizing energy consumption and maximizing throughput using NC has been successfully done.Originality/valueThis paper adopts the latest optimization algorithm called IM-LA, which is used to solve the problem of network coding scheduling in a WSN. This is the first work that utilizes IM-LA for optimal network coding in a WSN.

Publisher

Emerald

Reference33 articles.

1. Network information flow;IEEE Transactions on Information Theory,2000

2. A survey on sensor networks;IEEE Communications Magazine,2002

3. Network coding-based post-quantum cryptography;IEEE Journal on Selected Areas in Information Theory,2021

4. Optimization using lion algorithm: a biological inspiration from lion’s social behavior;Evolutionary Intelligence,2018

5. Survey on the characterization and classification of wireless sensor networks applications;IEEE Communications Surveys and Tutorials,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3