Estimating the elastic modulus of concrete under moderately elevated temperatures via impulse excitation technique

Author:

Coelho TulioORCID,Diniz Sofia Maria CarratoORCID,Rodrigues Francisco

Abstract

PurposeTo evaluate the temperature-dependency of the Young’s and shear moduli of concrete after exposure to moderately elevated temperatures using the non-destructive impulse excitation technique (IET).Design/methodology/approachThe study involved heating the concrete up to 225 °C and measuring the dynamic Young’s and shear moduli using the non-destructive technique of impulse excitation, which measures the natural vibration frequency from a mechanical impulse received by an acoustic sensor. The effects of temperature on the dynamic Young’s and shear moduli were analysed and the importance of the spatial variability of the measured values was also verified.FindingsThe study found that even moderately elevated temperatures (below 225 °C) resulted in a significant permanent reduction in the Young’s modulus of concrete (reduction in the range of 23%–36% for the maximum temperature considered in this research) as well as a modest and permanent reduction in the shear modulus of around 6%. It was also observed that spatial variability of the mechanical properties of concrete plays an important role in the measured values; higher dispersion of the results was found for the values of the Young’s and shear moduli of concrete measured along the height of the beam. The non-destructive test method used in this study was found to be extremely useful in the investigation of heat-related damage in concrete structures for its ease of use, low time consumption and accuracy. The results were consistent with the published literature.Originality/valueThis study provides important insights into the temperature-dependent behaviour of the dynamic Young’s and shear moduli of concrete and highlights the significance of proper consideration of the spatial variability of the measured values. The use of a non-destructive test method for continuous acoustic testing during heating and cooling proved to be effective, and the findings contribute to the fields of materials science and civil engineering in understanding the effects of elevated temperatures on concrete properties. The findings confirm that IET can be easily used to gather important information in the condition assessment and rehabilitation of concrete structures after a fire event. Further studies to foster the application of this technique to real structures are suggested.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3