A novel design space concept for design of concrete foundation supporting chemical reactors

Author:

Bedair OsamaORCID

Abstract

PurposeThis paper presents a novel concept for design of concrete support system for chemical reactors used in refineries and petrochemical plants. Graphical method is described that can be used to size the concrete base and piling system. Recommendations are also provided to optimize the parameters required for the design. The procedure is illustrated for design of two reactor models commonly used in gas recovery units.Design/methodology/approachDesign space representation for the foundation system is described for chemical reactors with variable heights. The key points of the design graph are extracted from the numerical finite element models. The reactor load is idealized at discrete points to transfer the loads to the piles. Bilateral spring system is used to model the soil restrains.FindingsThe graphical approach is economical and provides the design engineer the flexibility to select the foundation parameters from wide range of options.Practical implicationsThe concept presented in the paper can be utilized by engineers in the industry for design of chemical reactors. It must be noted that little guidelines are currently available in practice addressing the structural design aspects.Originality/valueA novel concept is presented in this paper based on significant industrial design experience of reactor supports. Using the described method leads to significant cost savings in material quantity and engineering time.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference21 articles.

1. A review of chemical absorption of carbon dioxide for biogas upgrading;Chinese Journal of Chemical Engineering,2016

2. Optimal design and operation of ammonia decomposition reactors;International Journal of Energy Research,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3