Early prediction of chronic disease using an efficient machine learning algorithm through adaptive probabilistic divergence based feature selection approach

Author:

Hegde Sandeepkumar,Mundada Monica R.

Abstract

Purpose According to the World Health Organization, by 2025, the contribution of chronic disease is expected to rise by 73% compared to all deaths and it is considered as global burden of disease with a rate of 60%. These diseases persist for a longer duration of time, which are almost incurable and can only be controlled. Cardiovascular disease, chronic kidney disease (CKD) and diabetes mellitus are considered as three major chronic diseases that will increase the risk among the adults, as they get older. CKD is considered a major disease among all these chronic diseases, which will increase the risk among the adults as they get older. Overall 10% of the population of the world is affected by CKD and it is likely to double in the year 2030. The paper aims to propose novel feature selection approach in combination with the machine-learning algorithm which can early predict the chronic disease with utmost accuracy. Hence, a novel feature selection adaptive probabilistic divergence-based feature selection (APDFS) algorithm is proposed in combination with the hyper-parameterized logistic regression model (HLRM) for the early prediction of chronic disease. Design/methodology/approach A novel feature selection APDFS algorithm is proposed which explicitly handles the feature associated with the class label by relevance and redundancy analysis. The algorithm applies the statistical divergence-based information theory to identify the relationship between the distant features of the chronic disease data set. The data set required to experiment is obtained from several medical labs and hospitals in India. The HLRM is used as a machine-learning classifier. The predictive ability of the framework is compared with the various algorithm and also with the various chronic disease data set. The experimental result illustrates that the proposed framework is efficient and achieved competitive results compared to the existing work in most of the cases. Findings The performance of the proposed framework is validated by using the metric such as recall, precision, F1 measure and ROC. The predictive performance of the proposed framework is analyzed by passing the data set belongs to various chronic disease such as CKD, diabetes and heart disease. The diagnostic ability of the proposed approach is demonstrated by comparing its result with existing algorithms. The experimental figures illustrated that the proposed framework performed exceptionally well in prior prediction of CKD disease with an accuracy of 91.6. Originality/value The capability of the machine learning algorithms depends on feature selection (FS) algorithms in identifying the relevant traits from the data set, which impact the predictive result. It is considered as a process of choosing the relevant features from the data set by removing redundant and irrelevant features. Although there are many approaches that have been already proposed toward this objective, they are computationally complex because of the strategy of following a one-step scheme in selecting the features. In this paper, a novel feature selection APDFS algorithm is proposed which explicitly handles the feature associated with the class label by relevance and redundancy analysis. The proposed algorithm handles the process of feature selection in two separate indices. Hence, the computational complexity of the algorithm is reduced to O(nk+1). The algorithm applies the statistical divergence-based information theory to identify the relationship between the distant features of the chronic disease data set. The data set required to experiment is obtained from several medical labs and hospitals of karkala taluk ,India. The HLRM is used as a machine learning classifier. The predictive ability of the framework is compared with the various algorithm and also with the various chronic disease data set. The experimental result illustrates that the proposed framework is efficient and achieved competitive results are compared to the existing work in most of the cases.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference18 articles.

1. Detection of chronic kidney disease using machine learning algorithms with least number of predictors;International Journal of Soft Computing and Its Applications,2019

2. Predictive analytics of chronic kidney disease using machine learning algorithm;International Journal of Recent Technology and Engineering (IJRTE),2019

3. A prediction of chronic kidney disease using feature based priority assigning algorithm;International Journal of Applied Engineering Research,2017

4. Feature selection in machine learning: a new perspective;Neurocomputing,2018

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing a Machine Learning Approach, Chronic Disease Identification and Prediction;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

2. Clinical Insight: Comparative Analysis of Deep Learning Models for Disease Prediction across Multifaceted Datasets;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

3. Performance Evaluation of Machine Learning Models for Multiple Chronic Disease Diagnosis Using Symptom Data;Automatic Control and Computer Sciences;2024-04

4. Early-Stage Disease Prediction from Various Symptoms Using Machine Learning Models;EAI Endorsed Transactions on Internet of Things;2024-03-11

5. Enhancing Disease Prediction through Ensemble Learning Techniques;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3