Development and implementation of a robotic inspection system for power substations

Author:

Zhang Haojie,Su Bo,Meng Hong

Abstract

Purpose With the dramatically increasing number of substations, robots are expected to inspect equipment in the power industry. However, a traditional robotic system cannot work stably because of the strong electromagnetic field in substation. The purpose of this paper is to present a robust and stable robotic system for inspecting the substation equipment without the involvement of workers. Design/methodology/approach The paper presents in detail a robotic system that consists of a monitor center and a robot. With the monitor center, the workers could send inspection tasks and monitor status of the robot timely. Once a fault is detected, the alarm message will flash immediately to remind the workers. The patrol mode of the robot comprises teleoperation, regular inspection, special inspection and a key return mode. The robot only relies on a low-cost magnetic sensor for lateral positioning and radio frequency identification technology for longitudinal positioning when working under patrol mode. At each stop point, the substation equipment can be recognized quickly through accurate matching with the template image stored in the database. Findings It is shown that the robot could work efficiently and reliably in power substations. The positioning error is proved to be within 5 mm, compared to that of 20 cm by implementing integrated global positioning system-dead reckoning navigation. Because of the high positioning accuracy, it is much easier to recognize the substation equipment. It is observed that nearly 99 per cent of equipments can be recognized. Research limitations/implications The proposed robotic system is tested in a simple substation environment. While the proposed system shows satisfactory positioning results, further studies considering changeable weather condition will focus on improving the equipment recognition rate in such environment, such as rainy, snowy and strong sunlight. Practical implications The key contribution of this paper is that it provides a robotic system to inspect substation equipment instead of workers, to improve working efficiency and to reduce manpower cost. Originality/value This paper presents a robotic system to inspect substation equipment instead of workers. Four patrol modes are designed to meet the inspection demand. Comparing with the previous robotic systems, this system contributes to higher position accuracy and higher equipment recognition rate.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference18 articles.

1. Development of a mobile robotic platform for the underground distribution lines,2008

2. Telerobotic system for live power lines maintenance: ROBTET;Control Engineering Practice,2002

3. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography;Communications of the ACM,1981

4. Omni-directional vision for robot navigation in substation environments,2009

5. A mobile robot for inspection of substation equipments,2010

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recognition, location, and depth estimation of objects in electrical substations;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

2. A review of indoor-orbital electrical inspection robots in substations;Industrial Robot: the international journal of robotics research and application;2022-12-02

3. Digital Image Processing for Remote Sensing of the Earth’s Surface;Digital Economy, Business Analytics, and Big Data Analytics Applications;2022

4. Intelligent Diagnosis System of Networked Substation Equipment Based on Data Mining Algorithm;2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT);2021-11-22

5. Towards a balancing safety against performance approach in human–robot co-manipulation for door-closing emergencies;Complex & Intelligent Systems;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3