Contact modeling with a finite element model in piston ring‒liner conjunction under dry conditions

Author:

Nikolakopoulos Pantelis G.,Grigoriadis Kyriakos,Zavos Anastasios

Abstract

Purpose The purpose of this paper is to focus on the creation of an isothermal elastic ring-liner model to highlight, through stresses, the occurrence of the plastic deformation in certain crank angles under extreme dry lubrication conditions. Design/methodology/approach The stresses that are exported from this analysis are pointing out not only the necessity for an elastoplastic model to be created, but also the importance of predicting the correct friction coefficient, as pointed out by both the contact surface stress and that in depth of the two bodies in contact. Findings The comparison between the finite element model and the adhesion mathematical model of Johnson, Kendall and Roberts seals the importance to calculate the interaction forces, acting on the common solid surface, in the pursuit of defining a propriate contact patch. Additionally, a three-dimensional ring model is built, highlighting the importance of the modeling surface’s micro asperities for a solid stress analysis. Also, numerical experiments are conducted, in contact with the cylinder and a piston ring made of an iron alloy and of two different plating materials, such us Chromium (Cr) and Chromium‒Nickel Alloy (CrN). The ability to calculate the stress concentration factor is also described. Originality/value A three-dimensional ring model is built, highlighting the importance of the modeling surface’s micro asperities for a solid stress analysis. Also, numerical experiments are conducted, in contact with the cylinder and a piston ring made of an iron alloy and of two different plating materials, such us Chromium (Cr) and Chromium‒Nickel Alloy (CrN). The ability to calculate the stress concentration factor is also described.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference33 articles.

1. Contact modeling – forces;Tribology International,2000

2. Estimating the fatigue stress concentration factor of machined surfaces;International Journal of Fatigue,2002

3. Contact mechanics of rough surfaces in tribology: single asperity contact;Applied Mechanics Reviews,1996

4. Contact mechanics of rough surfaces in tribology: multiple asperity contact;Tribology Letters,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3