Prognostic analysis of fastener joints in straight attachment lugs

Author:

Chikmath L.,Dattaguru B.

Abstract

Purpose Many failures of aircraft structural components in the past were attributed to cracks emanating from joints, which are identified as the most critical locations. In cases using the recently emerging structural health monitoring (SHM) systems, continuous monitoring needs be carried out at many major joint locations. The purpose of this paper is to develop computational techniques for fastener joints, including the possible change in contact conditions and change in boundary values at the pin-hole interface. These techniques are used for the prognostic analysis of pin-loaded lug joints with rigid/elastic pin subjected to fatigue loading by estimating the residual life of the component at any given instance to assist the SHM systems. Design/methodology/approach Straight attachment lug joints with rigid/elastic push-fit pin and smooth pin-hole interface are modelled in commercial software MSC PATRAN. In each case, the joint is subjected to various types of fatigue load cycles, and for each type of cycles, the critical locations and the stress concentrations are identified from the stress analysis. Later, for each type of fatigue cycle, the number of cycles required for crack initiation is estimated. A small crack is located at these points, and the number of cycles required to reach the critical length when unstable crack growth occurs is also computed. The novelty in the analysis of life estimations is that it takes into account possible changes in contact conditions at the pin-hole interface during load reversals in fatigue loading. Findings The current work on fastener joints brings out the way the load reversals leading to change in contact conditions (consequently changing boundary conditions) are handled during fatigue loading on a push-fit joint. The novel findings are the effect of the size of the hole/lug width, elasticity of the material and the type of load cycles on the fatigue crack initiation and crack growth life. Given other parameters constant, bigger size hole and stiffer pin lead to lesser life. Under load controlled fatigue cycles, pull load contributes to significant part of fatigue life. Originality/value The analysis considers the changing contact conditions at the pin-hole interface during fatigue cycles with positive and negative stress ratios. The results presented in this paper are of value to the life prediction of structural joints for various load cycles (for both pull-pull cases, in which the load ratios are positive, and pull-push cycles, where the load ratios are negative). The prognostic data can be used to effectively monitor the critical locations with joints for SHM applications.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference23 articles.

1. The distribution of stress round a circular hole in a plate;Philosophical Transactions of the Royal Society (London), Series A,1928

2. Effect of non-linear behavior of joints on the damage tolerance analysis in aerospace structures;Proceedings of Indian National Science Academy,2013

3. Experimental study of loosening behavior of plain shank bolted joint under dynamic loading;International Journal of Structural Integrity,2015

4. Elber, W. (1971), “The significance of fatigue crack closure”, Damage Tolerance in Aircraft Structure, American Society for Testing and Materials, Philadelphia, PA, pp. 230-242.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3