Abstract
PurposeThe objective of this paper is to perform infrared (IR) face recognition efficiently with convolutional neural networks (CNNs). The proposed model in this paper has several advantages such as the automatic feature extraction using convolutional and pooling layers and the ability to distinguish between faces without visual details.Design/methodology/approachA model which comprises five convolutional layers in addition to five max-pooling layers is introduced for the recognition of IR faces.FindingsThe experimental results and analysis reveal high recognition rates of IR faces with the proposed model.Originality/valueA designed CNN model is presented for IR face recognition. Both the feature extraction and classification tasks are incorporated into this model. The problems of low contrast and absence of details in IR images are overcome with the proposed model. The recognition accuracy reaches 100% in experiments on the Terravic Facial IR Database (TFIRDB).
Subject
Information Systems,Management of Technology and Innovation,General Decision Sciences
Reference30 articles.
1. Deep gesture interaction for augmented anatomy learning;International Journal of Information Management,2019
2. Deep learning approach for human action recognition in infrared images;Cognitive Systems Research,2018
3. Deep face recognition using imperfect facial data;Future Generation Computer Systems,2019
4. Coal analysis based on visible-infrared spectroscopy and a deep neural network;Infrared Physics and Technology,2018
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献