Ranking the ontology development methodologies using the weighted decision matrix

Author:

Sinha Prashant KumarORCID,Dutta BiswanathORCID,Varadarajan UdayaORCID

Abstract

PurposeThe current work provides a framework for the ranking of ontology development methodologies (ODMs).Design/methodology/approachThe framework is a step-by-step approach reinforced by an array of ranking features and a quantitative tool, weighted decision matrix. An extensive literature investigation revealed a set of aspects that regulate ODMs. The aspects and existing state-of-the-art estimates facilitated in extracting the features. To determine weight to each of the features, an online survey was implemented to secure evidence from the Semantic Web community. To demonstrate the framework, the authors perform a pilot study, where a collection of domain ODMs, reported in 2000–2019, is used.FindingsState-of-the-art research revealed that ODMs have been accumulated, surveyed and assessed to prescribe the best probable ODM for ontology development. But none of the prevailing studies provide a ranking mechanism for ODMs. The recommended framework overcomes this limitation and gives a systematic and uniform way of ranking the ODMs. The pilot study yielded NeOn as the top-ranked ODM in the recent two decades.Originality/valueThere is no work in the literature that has investigated ranking the ODMs. Hence, this is a first of its kind work in the area of ODM research. The framework supports identifying the topmost ODMs from the literature possessing a substantial amount of features for ontology development. It also enables the selection of the best possible ODM for the ontology development.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference81 articles.

1. An agile methodology for ontology development;International Journal of Intelligent Engineering and Systems,2019

2. A comparative study on ontology development methodologies towards building semantic conflicts detection ontology for heterogeneous web services;Research Journal of Applied Sciences, Engineering and Technology,2014

3. IKARUS-Onto: a methodology to develop fuzzy ontologies from crisp ones;Knowledge and Information Systems,2012

4. A review on ontology development methodologies for developing ontological knowledge representation systems for various domains;International Journal of Information Engineering and Electronic Business,2020

5. Revisiting ontology design: a methodology based on corpus analysis,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ontological data model to support urban flood disaster response;Journal of Information Science;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3