Deep learning-based surrogate model for fast multi-material topology optimization of IPM motor

Author:

Sato Hayaho,Igarashi Hajime

Abstract

Purpose This paper aims to present a deep learning–based surrogate model for fast multi-material topology optimization of an interior permanent magnet (IPM) motor. The multi-material topology optimization based on genetic algorithm needs large computational burden because of execution of finite element (FE) analysis for many times. To overcome this difficulty, a convolutional neural network (CNN) is adopted to predict the motor performance from the cross-sectional motor image and reduce the number of FE analysis. Design/methodology/approach To predict the average torque of an IPM motor, CNN is used as a surrogate model. From the input cross-sectional motor image, CNN infers dq-inductance and magnet flux to compute the average torque. It is shown that the average torque for any current phase angle can be predicted by this approach, which allows the maximization of the average torque by changing the current phase angle. The individuals in the multi-material topology optimization are evaluated by the trained CNN, and the limited individuals with higher potentials are evaluated by finite element method. Findings It is shown that the proposed method doubles the computing speed of the multi-material topology optimization without loss of search ability. In addition, the optimized motor obtained by the proposed method followed by simplification for manufacturing is shown to have higher average torque than a reference model. Originality/value This paper proposes a novel method based on deep learning for fast multi-material topology optimization considering the current phase angle.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference10 articles.

1. Transfer learning through deep learning: application to topology optimization of electric motor;IEEE Transactions on Magnetics,2020

2. Image net: a large-scale hierarchical image database,2009

3. Micro-genetic algorithms for stationary and non-stationary function optimization,1990

4. Topology optimization accelerated by deep learning;IEEE Transactions on Magnetics,2019

5. Multi phase topology optimization using radial basis function for design of permanent magnet motor,2019

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3