Reliability analysis of repairable multistate phased mission systems with Markov approach based on states

Author:

Yılmaz SibelORCID,Elmastaş Gültekin ÖzgeORCID

Abstract

PurposeThe purpose of this study is to find the reliability of the three-component three-phased mission system, which can be repaired by considering the exponential distribution for repair and failure rates in the transitions between the phases based on states with Markov approach. Also, multilevel-phased mission systems are calculated based on states for partially working states.Design/methodology/approachThe reliabilities of the repairable two-level and three-level three-component three-phased mission systems based on states are calculated with the Markov approach. The structure functions are obtained for each phase of the systems, and differential equations are created by the failure and repair of each working state component. These equations are solved using Laplace method.FindingsReliability values of two-level and three-level three-component three-phased systems with different failure, repair, and time intervals are calculated and compared. The intermediate states that multilevel systems handle differently from two-level systems provide a better investigation of the systems. So, these repairable systems offer transparent information in complex systems like transportation and energy, ensuring appropriate timing and cost for repair operations.Originality/valueThis study is original in terms of calculating the reliability of the repairable phased mission system based on the states using Markov method. It is also important in calculating the reliability of the repairable multilevel phased mission system based on states and making reliability comparisons according to different repair and failure rates, equal and different time intervals.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference21 articles.

1. Quantitative reliability evaluation of repairable phased mission systems using Markov approach;IEEE Transactions on Reliability,1986

2. Reliability analysis of phased-mission systems: a practical approach,2006

3. Failure behavior analysis of phased-mission systems considering functional and physical isolation effects;Chinese Journal of Aeronautics,2022

4. Time domain multi state Markov model for engine system reliability analysis;Mechanical Engineering Journal,2016

5. Reliability analysis of k-out-of-n Phased-Mission systems with Phase-AND requirement,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3