Reconstruction of granite microstructure model using simulated annealing method and Voronoi tessellation

Author:

Chen BinORCID,Wang YuanORCID,Cui Shaoqing,Xiang Jiansheng,Latham John-PaulORCID,Fu JinlongORCID

Abstract

PurposeAccurate presentation of the rock microstructure is critical to the grain-scale analysis of rock deformation and failure in numerical modelling. 3D granite microstructure modelling has only been used in limited studies with the mineral pattern often remaining poorly constructed. In this study, the authors developed a new approach for generating 2D and 3D granite microstructure models from a 2D image by combining a heterogeneous material reconstruction method (simulated annealing method) with Voronoi tessellation.Design/methodology/approachMore specifically, the stochastic information in the 2D image is first extracted using the two-point correlation function (TPCF). Then an initial 2D or 3D Voronoi diagram with a random distribution of the minerals is generated and optimised using a simulated annealing method until the corresponding TPCF is consistent with that in the 2D image. The generated microstructure model accurately inherits the stochastic information (e.g. volume fraction and mineral pattern) from the 2D image. Lastly, the authors compared the topological characteristics and mechanical properties of the 2D and 3D reconstructed microstructure models with the model obtained by direct mapping from the 2D image of a real rock sample.FindingsThe good agreements between the mapped and reconstructed models indicate the accuracy of the reconstructed microstructure models on topological characteristics and mechanical properties.Originality/valueThe newly developed reconstruction method successfully transfers the mineral pattern from a granite sample into the 2D and 3D Voronoi-based microstructure models ready for use in grain-scale modelling.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3